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Abstract

A constructive approach to the classi�cation and invariance problems, with respect to basis changes,

of the �nite dimensional algebras is o�ered. A construction of an invariant open, dense (in the Zariski

topology) subset of the space of structural constants of algebras and a classi�cation of the corresponding

algebras by providing a separating system of rational invariants are given. A �nite system of generators

for the corresponding �eld of invariant rational functions is shown.
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1 Introduction

The classi�cation of �nite dimensional algebras is an important problem
in Algebra. For example, the classi�cation of �nite dimensional simple and
semi-simple associative algebras by Wedderburn, the classi�cation of �nite
dimensional simple and semi-simple Lie algebras by Cartan are well known.
Their classi�cations are examples of structural (basis free, invariant) approaches
to the classi�cation problem of algebras. The structural approach becomes
more di�cult and unclear when one considers more general types of algebras.
Another disadvantage of such approach is that the classi�cation is assumed
to be only with respect to the general linear group. In reality one may be
interested also in classi�cation of algebras with respect to speci�c changes of
basis.

Another approach to the classi�cation problem of algebras is coordinate
(basis based, structural constants) approach. For the small dimensional cases
for such approach one can see [1-3]. In general case the basis based approach is
considered in [4]. We also consider the classi�cation and invariants problem of
�nite dimensional algebras in general case. Though there are some intersecting
results in this paper with those of [4] our used tools are more elementary and
more constructive than of [4]. We note (Remark 2.1) that our approach is
applicable to some classical subgroups of general linear group case as well.
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In general for the given dimension we provide a method how to construct
an invariant, open, dense subset of the space of structural constants of algebras
and classify all algebras who's system of structural constants are in this set.
We provide a basis for the �eld of invariant rational functions of structural
constants as well.

The paper is organized in the following way. The key results which are
used to obtain the classi�cation and invariants of algebras are presented in
Section 2. Section 3 can be considered as a realization of Section 2 results in
the case of representation of general linear group in the space of structural
constants of algebras.

2 Preliminaries

In this section we consider a linear representation of a subgroup of the general
linear group and under an assumption prove some general results about the
equivalence and invariance problems with respect to this subgroup.

Let n, m be any natural numbers, τ : (G, V ) → V be a �xed linear
algebraic representation of an algebraic subgroup G of GL(m,F ) over V ,
where F is any �eld and V is n-dimensional vector space over F . Further we
consider this representation under the following assumption:
Assumption. There exists a nonempty G-invariant subset V0 of V and

an algebraic map P : V0 → G such that

P (τ(g,v)) = P (v)g−1 (1)

whenever v ∈ V0 and g ∈ G.
Theorem 2.1. Elements u,v ∈ V0 are G-equivalent, that is u = τ(g,v)

for some g ∈ G, if and only if τ(P (u),u) = τ(P (v),v).
Proof. If u = τ(g,v) then τ(P (u),u) = τ(P (τ(g,v)), τ(g,v)) =

τ(P (v)g−1, τ(g,v)) = τ(P (v), τ(g−1, τ(g,v))) = τ(P (v),v).

Visa versa, if τ(P (u),u) = τ(P (v),v) then

τ(P (u)−1P (v),v) = τ((P (u))−1, τ(P (v),v)) = τ((P (u))−1, τ(P (u),u)) = u

that is u = τ(g,v), where g = P (u)−1P (v).
This proposition shows that the system of components of τ(P (x),x) is a

separating system of invariants for theG-orbits in V0, where x = (x1, x2, ..., xn)
is an algebraic independent system of variables over F .
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Further in this paper it is assumed that F is an algebraically closed �eld
of characteristic zero, V0 in the above Assumption is a dense (in Zariski
topology) in V and G-invariant. In such case for any u,v ∈ V0 one has
P (τ(P (u),v)) = P (v)P (u)−1 and due to density of V0 in V one has

P (τ(P (y),x)) = P (x)P (y)−1,

where y = (y1, y2, ..., yn) is also an algebraic independent system of variables
over F .
Theorem 2.2. The �eld ofG-invariant rational functions F (x)G is generated

over F by the system of components of τ(P (x),x).
Proof. It is evident that all components of τ(P (x),x) are in F (x)G. If

f(x) = f(τ(g,x)) for all g ∈ G then, in particular, f(x) = f(τ(P (u),x))
whenever u ∈ V0. It implies, as far as V0 is dense in V , that for the variable
vector y the equality

f(x) = f(τ(P (y),x))

holds true. In y = x case one gets that f(x) = f(τ(P (x),x)).
Corollary 2.1. The �eld F (x) is generated over F (x)G by the system of

components of P (x).
Proof. Indeed F (x)G(P (x)) = F (τ(P (x),x))(P (x)) = F (τ(P (x),x), P (x))

and
τ(P (x)−1, τ(P (x),x)) = x and therefore F (x)G(P (x)) = F (x).
Proposition 2.1. The equality trdegF (P (x))/F = dimG holds true.
Proof. To prove the equality it is enough to show equality of the vanishing

ideals of P (x) and G. If polynomial p vanished on P (x), that is p[P (x)] = 0,
then p[P (τ(g,x, ))] = p[P (x)g−1] = 0. In particular, p[g] = 0 for any g ∈ G
that is p vanishes on G as well.

If p[g] = 0 for any g ∈ G then, in particular, p[P (u)] = 0 for any u ∈ V0.
Due to density of V0 in V one has p[P (x)] = 0.
Theorem 2.3. The equality trdegF (x)G/F = n− dimG holds true.

Proof. Let P̃ (x) stand for any system of entries of P (x) which is a
transcendence basis for the �eld F (P (x)) over F . We show that the system

P̃ (x) is algebraic independent over F (x)G as well. Indeed let p[ ˜(yij)i,j=1,2,...,m]

be any polynomial over F (x)G for which p[P̃ (x)] = 0 that is pv[P̃ (v)] = 0
for all v ∈ V1, where V1 is a G-invariant nonempty open subset of V0, where

pv[ ˜(yij)i,j=1,2,...,m] stands for the polynomial obtained from p[ ˜(yij)i,j=1,2,...,m]
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by substitution v for x. The equality 0 = pv[P̃ (v)] = pτ(g,v)[ ˜P (τ(g,v))] =

pv[ ˜P (v)g−1] implies that pv[g̃] = 0 for any g ∈ G. Therefore pv[P̃ (x)] = 0,

that is pv[ ˜(yij)i,j=1,2,...,m] is zero polynomial for any v ∈ V1. It means that

p[ ˜(yij)i,j=1,2,...,m] is zero polynomial itself. Now due to F ⊂ F (x)G ⊂ F (x),
tr.deg.F (x)/F = n and Corollary 2.1 one has the required result.

For G = GL(m,F ) case due to Theorem 2.3 one has the following result.
Corollary 2.2 The transcendence degree of F (x)GL(m,F ) over F equals to

n−m2 and the �eld extension F (x)GL(m,F ) ⊂ F (x) is a pure transcendental
extension. For a transcendental basis one can take the system of components
of P (x).
Remark 2.1 The above presented results show the importance of having

for the given subgroupG the map P (x) with the properties as in the Assumption.
The following two statements are evident.

a) If for a subgroup G one has P (x) with the needed properties then for
the group SG = G ∩ SL(m,F ) one can construct P (x) with the needed
properties by de�ning it to be P (x) := 1

detP (x)P (x).

b) To get similar P (x) for the orthogonal group G = O(n, F ), provided
that one knows P (x) for GL(m,F ) , one can apply the Gram-Schmidt's
orthogonal process to the system of rows of P (x) if possible. As a result
one gets an orthogonal matrix Q(x)P (x), where Q(x) is an upper triangular
matrix with O(m,F )-invariant entries. For O(m,F ) one can consider this
Q(x)P (x) for it's P (x).
Remark 2.2 The Assumption may be productive in a slightly di�erent

form as well: There exists a nonempty G-invariant subset V0 of V and
an algebraic map P : V0 → GL(m,F ) such that P (τ(g,v)) = P (v)g−1

whenever v ∈ V0 and g ∈ G. In this case Theorem 2.1 can be formulated in
the following form: Elements u,v ∈ V0 are G-equivalent, that is u = τ(g,v)
for some g ∈ G, if and only if τ(P (u),u) = τ(P (v),v) and P (u)−1P (v) ∈
G. For the classical subgroups ofGL(m,F ) the relation P (u)−1P (v) ∈ G can
be written in terms of equality of some G-invariants on P (u) and P (v), for
example, in G = O(m,F )-the orthogonal group case it means P (u)P (u)t =
P (v)P (v)t. So in such cases for the classical subgroups the separating system
of invariants can be listed easily. But whether the separating system generates
the corresponding �eld of invariant functions is unclear even one admits
density of V0 in V .
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Question 2.1. Under the assumption for G = GL(m,F ) is it true that
F ⊂ F (x)GL(m,F ) is also a pure transcendental extension?

3 Classi�cation of algebras

3.1 General case

In this paper we use the standard notation (the Einstein notation) for tensors
as well as the matrix representation for tensors which is more convenient in
dealing with equivalence and invariance problems of tensors with respect
to basis changes. The use of matrix representation for tensors makes the
descriptions more transparent as well. Further the classi�cation problem is
considered only with respect to the general linear group.

Let us consider any m dimensional algebra W with multiplication · given
by a bilinear map (u,v) 7→ u · v. If e = (e1, e2, ..., em) is a basis for W then
one can represent the bilinear map by a matrix A ∈ Mat(m ×m2;F ) such
that

u · v = eA(u⊗ v)

for any u = eu,v = ev, where u = (u1, u2, ..., um), v = (v1, v2, ..., vm) are
column vectors. So the binary operation (bilinear map, tensor) is presented
by the matrix A ∈ Mat(m×m2;F ) with respect to the basis e. Further we
deal only with such matrices of rank m.

If e′ = (e′1, e′2, ..., e′m) is also a basis for W , g ∈ G = GL(m,F ), e′g = e
and u · v = e′B(u′ ⊗ v′), where u = e′u′,v = e′v′, then u · v = eA(u ⊗
v) = e′B(u′ ⊗ v′) = eg−1B(gu ⊗ gv) = eg−1B(g ⊗ g)(u ⊗ v) as far as
u = eu = e′u′ = eg−1u′,v = ev = e′v′ = eg−1v′. Therefore the equality

B = gA(g−1)⊗2 (2)

is valid.
Now let τ stand for the representation of G = GL(m,F ) on the n = m3

dimensional vector space V = Mat(m×m2;F ) de�ned by

τ : (g, A) 7→ B = gA(g−1 ⊗ g−1).

To have Theorems 2.1-2.3 for this case we will construct a map P : V0 →
GL(m,F ) with property (1) in the following way. For any natural number k
due to (2) one has

B⊗k = g⊗kA⊗k(g−1)⊗2k (3)
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Let us consider all its possible contractions with respect to k upper and k
lower indices. It is clear that the result of each of such contraction will be
f(B) = f(A)(g−1)⊗k type equality, where f(A) is a row vector with mk

entries.
In k = 1 case one gets the following 211! = 2 di�erent row equalities:

Tr1(B) = Tr1(A)g
−1, Tr2(B) = Tr2(A)g

−1, where Tr1(A) stands for the
row vector with entries Aj

j,i =
∑n

j=1A
j
j,i- the contraction on the �rst upper

and lower indices and Tr2(A) stands for the row vector with entries Aj
i,j =∑n

j=1A
j
i,j- the contraction on the �rst upper and second lower indices.

In k = 2 case one gets the following 222! + 211! = 10 di�erent row
equalities:

Tri(B)⊗Trj(B) = (Tri(A)⊗Trj(A))(g
−1)⊗2, Tri(B)B = Tri(A)A(g

−1)⊗2,

where i, j = 1, 2, and

(Bi
j,pB

j
i,q) = (Ai

j,pA
j
i,q)(g

−1)⊗2, (Bi
j,pB

j
q,i) = (Ai

j,pA
j
q,i)(g

−1)⊗2,

(Bi
p,jB

j
i,q) = (Ai

p,jA
j
i,q)(g

−1)⊗2, (Bi
p,jB

j
q,i) = (Ai

p,jA
j
q,i)(g

−1)⊗2.

In any k case only the number of contractions of A⊗k when all k di�erent
upper indices are contracted with lower indices of di�erent A is

(2k)× (2(k − 1))× (2(k − 2))× ...× 2 = 2kk!.

In general it is nearly clear that the corresponding resulting system of 2kk!
rows depending on the variable matrix A := x = (xij,k)i,j,k=1,2,...,m is linear

independent over F . But for big enough k the inequality 2kk! ≥ mk holds
true as well. Therefore in general for big enough k it is possible to choose mk

contractions (rows) among the all contractions of x⊗k for which the matrix
Q(x) consisting of thesemk rows is a nonsingular matrix. For the matrixQ(x)
one has equality Q(y) = Q(x)(g−1)⊗k whenever g ∈ G, y = gx(g−1)⊗2.

Now note that for any A ∈ {x : det(Q(x)) ̸= 0} and g ∈ G one has, for
example, (B ⊗ (Tr1(B))⊗k−2)Q(B)−1 =

g(A⊗(Tr1(A))
⊗k−2)(g−1)⊗k(Q(A)(g−1)⊗k)−1 = g(A⊗(Tr1(A))

⊗k−2)Q(A)−1.

Therefore if P (A)−1 stands for arbitrary nonsingularm×m size sub-matrix of
(A ⊗ (Tr1(A))

⊗k−2)Q(A)−1 then one has the equality P (B)−1 = gP (A)−1,
where g ∈ G, B = gA(g−1)⊗2. It implies that whenever A ∈ V0 = {A :
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det(P (A)) det(Q(A)) ̸= 0} the equality P (B) = P (A)g−1 holds true for any
g ∈ G and B = gA(g−1)⊗2. Note that

V0 = {A : det(P (A)) det(Q(A)) ̸= 0}

is a G-invariant, open and dense subset of V .
Therefore we have the following results.
Theorem 3.1. Two algebras with matrices of structural constants A,B ∈

V0 are same (isomorph) algebras if and only if

P (A)A(P (A)−1 ⊗ P (A)−1) = P (B)B(P (B)−1 ⊗ P (B)−1).

Theorem 3.2. The �eld ofG-invariant rational functions F (x)G of structural
constants de�ned by variable matrix x = (xi

j,k)i,j,k=1,2,...,m is generated by the
system of entries of P (x)x(P (x)−1 ⊗ P (x)−1) over F , that is the equality

F (x)G = F (P (x)x(P (x)−1 ⊗ P (x)−1))

holds true.
Theorem 3.3. The transcendence degree of F (x)G over F equals tom3−

m2 and the �eld extension F (x)G ⊂ F (x) is a pure transcendental extension.
Remark 3.1. One of the main results (Theorem 1) of [4] states that the

�eld extension F ⊂ F (x)GL(m,F ) is a pure transcendental extension, which
so far we could not get by our approach. Theorem 3.3 can be considered as
a complementary result to that Theorem.

Now let us consider two and three dimensional algebra cases.
Example 3.l. Two dimensional (m = 2) case. Let

A =

(
A1

1,1 A1
1,2 A1

2,1 A1
2,2

A2
1,1 A2

1,2 A2
2,1 A2

2,2

)
be the matrix of structural constants with respect to a basis. In this case at
k = 1 already 211! = m1 and therefore for the rows of P (A) on can take

Tr1(A) = (A1
1,1 + A2

2,1, A
1
1,2 + A2

2,2) and Tr2(A) = (A1
1,1 + A2

1,2, A
1
2,1 + A2

2,2)

and V0 consists of all A for which

detP (A) = (A1
1,1 + A2

2,1)(A
1
2,1 + A2

2,2)− (A1
1,2 + A2

2,2)(A
1
1,1 + A2

1,2) ̸= 0.

To see the corresponding system of generators one can evaluate

P (x)x(P (x)−1 ⊗ P (x)−1), where x =

(
x11,1 x11,2 x12,1 x12,2
x21,1 x21,2 x22,1 x22,2

)
.
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On classi�cation problem of two dimensional algebras one can see [1,2].
Example 3.2. Three dimensional (m = 3) case. Let

A =

 A1
1,1 A1

1,2 A1
1,3 A1

2,1 A1
2,2 A1

2,3 A1
3,1 A1

3,2 A1
3,3

A2
1,1 A2

1,2 A2
1,3 A2

2,1 A2
2,2 A2

2,3 A2
3,1 A2

3,2 A2
3,3

A3
1,1 A3

1,2 A3
1,3 A3

2,1 A3
2,2 A3

2,3 A3
3,1 A3

3,2 A3
3,3


be the matrix of the structural constants with respect to a basis.

In this case at k = 1 one has 211! < 31. At k = 2 already 222! + 211! =
10 > 32 and the following 10 equalities

Tri(B)⊗Trj(B) = Tri(A)⊗Trj(A)(g
−1)⊗2, Tri(B)B = Tri(A)A(g

−1)⊗2,

where i, j = 1, 2,

(Bi
j,pB

j
i,q) = (Ai

j,pA
j
i,q)(g

−1)⊗2, (Bi
j,pB

j
q,i) = (Ai

j,pA
j
q,i)(g

−1)⊗2,

(Bi
p,jB

j
i,q) = (Ai

p,jA
j
i,q)(g

−1)⊗2, (Bi
p,jB

j
q,i) = (Ai

p,jA
j
q,i)(g

−1)⊗2

hold true.
Therefore, for example, for Q(A) one can take the following matrix

Q(A) =



Ai
i,1A

j
j,1 Ai

i,1A
j
j,2 Ai

i,1A
j
j,3 Ai

i,2A
j
j,1 Ai

i,2A
j
j,2

Ai
i,1A

j
1,j Ai

i,1A
j
2,j Ai

i,1A
j
3,j Ai

i,2A
j
1,j Ai

i,2A
j
2,j

Ai
1,iA

j
j,1 Ai

1,iA
j
j,2 Ai

1,iA
j
j,3 Ai

2,iA
j
j,1 Ai

2,iA
j
j,2

Ai
1,iA

j
1,j Ai

1,iA
j
2,j Ai

1,iA
j
3,j Ai

2,iA
j
1,j Ai

2,iA
j
2,j

Ai
i,jA

j
1,1 Ai

i,jA
j
1,2 Ai

i,jA
j
1,3 Ai

i,jA
j
2,1 Ai

i,jA
j
2,2

Ai
j,iA

j
1,1 Ai

j,iA
j
1,2 Ai

j,iA
j
1,3 Ai

j,iA
j
2,1 Ai

j,iA
j
2,2

Ai
j,1A

j
i,1 Ai

j,1A
j
i,2 Ai

j,1A
j
i,3 Ai

j,2A
j
i,1 Ai

j,2A
j
i,2

Ai
j,1A

j
1,i Ai

j,1A
j
2,i Ai

j,1A
j
3,i Ai

j,2A
j
1,i Ai

j,2A
j
2,i

Ai
1,jA

j
i,1 Ai

1,jA
j
i,2 Ai

1,jA
j
i,3 Ai

2,jA
j
i,1 Ai

2,jA
j
i,2
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Ai
i,2A

j
j,3 Ai

i,3A
j
j,1 Ai

i,3A
j
j,2 Ai

i,3A
j
j,3

Ai
i,2A

j
3,j Ai

i,3A
j
1,j Ai

i,3A
j
2,j Ai

i,3A
j
3,j

Ai
2,iA

j
j,3 Ai

3,iA
j
j,1 Ai

3,iA
j
j,2 Ai

3,iA
j
j,1

Ai
2,iA

j
3,j Ai

3,iA
j
1,j Ai

3,iA
j
2,j Ai

3,iA
j
3,j

Ai
i,jA

j
2,3 Ai

i,jA
j
3,1 Ai

i,jA
j
3,2 Ai

i,jA
j
3,3

Ai
j,iA

j
2,3 Ai

j,iA
j
3,1 Ai

j,iA
j
3,2 Ai

j,iA
j
3,3

Ai
j,2A

j
i,3 Ai

j,3A
j
i,1 Ai

j,3A
j
i,2 Ai

j,3A
j
i,3

Ai
j,2A

j
3,i Ai

j,3A
j
1,i Ai

j,3A
j
2,i Ai

j,3A
j
3,i

Ai
2,jA

j
i,3 Ai

3,jA
j
i,1 Ai

3,jA
j
i,2 Ai

3,jA
j
i,3


.

For P (A)−1 one can take any 3× 3 size nonsingular sub-matrix of
(A⊗Tr1(A))Q(A)−1, where (A⊗Tr1(A)) = A1

1,1A
i
i,1 A1

1,1A
i
i,2 A1

1,1A
i
i,3 A1

1,2A
i
i,1 A1

1,2A
i
i,2

A2
1,1A

i
i,1 A2

1,1A
i
i,2 A2

1,1A
i
i,3 A2

1,2A
i
i,1 A2

1,2A
i
i,2

A3
1,1A

i
i,1 A3

1,1A
i
i,2 A3

1,1A
i
i,3 A3

1,2A
i
i,1 A3

1,2A
i
i,2

A1
1,2A

i
i,3 A1

1,3A
i
i,1 A1

1,3A
i
i,2 A1

1,3A
i
i,3

A2
1,2A

i
i,3 A2

1,3A
i
i,1 A2

1,3A
i
i,2 A2

1,3A
i
i,3

A3
1,3A

i
i,3 A3

1,3A
i
i,1 A3

1,3A
i
i,2 A3

1,3A
i
i,3

 .

3.2 Commutative and anti-commutative algebra cases

For the classi�cation purpose instead of all m dimensional algebras one can
consider only such commutative or anti-commutative algebras. The commutativity
(anti-commutativity) of the binary operation in terms of the corresponding
matrix A means Ai

j,k = Ai
k,j (respectively, Ai

j,k = −Ai
k,j) for all i, j, k =

1, 2, ...,m. So in commutative (anti-commutative) algebra case for the V we
consider V =

{A ∈ Mat(m×m2;F ) : Ai
j,k = Ai

k,j(resp.A
i
j,k = −Ai

k,j) for all i, j, k = 1, 2, ...,m.}

Note that in commutative (anti-commutative) case the dimension of V is
m2(m+1)

2 (respectively, m2(m−1)
2 ).

To have Theorems 2.1-2.3 for these cases one can construct a map P :
V0 → GL(m,F ) with property (1) in a similar way as in the general algebra
case. Consider once again equality (3) and all its possible contractions with
respect to k upper and k lower indices.
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In commutative (anti-commutative) case at k = 1 one gets the following
1! = 1 row equality: Tr1(B) = Tr1(A)g

−1 = Tr2(A)g
−1 as far as Ai

j,k = Ai
k,j

(respectively, Tr1(B) = Tr1(A)g
−1 = −Tr2(A)g

−1 as far as Ai
j,k = −Ai

k,j)
for all i, j, k = 1, 2, ...,m.

In k = 2 case one gets the following 2! + 1! = 3 di�erent row equalities:

Tr1(B)⊗Tr1(B) = (Tr1(A)⊗Tr1(A))(g
−1)⊗2,

Tr1(B)B = Tr1(A)A(g
−1)⊗2, (Bi

j,pB
j
i,q) = (Ai

j,pA
j
i,q)(g

−1)⊗2.

In any k case only the number of contractions of A⊗k when all k di�erent
upper indices are contracted with lower indices of di�erent A is k!. Once
again in general it is nearly clear that the corresponding resulting system
of k! rows depending on variable matrix A := x = (xij,k)i,j,k=1,2,...,m, where
xij,k = xik,j (respectively, xij,k = −xik,j) for all i, j, k = 1, 2, ...,m, is linear

independent over F . But for big enough k the inequality k! ≥ mk holds true
as well. Therefore in general for big enough k it is possible to choose mk

contractions (rows) among the all contractions of x⊗k for which the matrix
Q(x) consisting of these mk rows is nonsingular. For the matrix Q(x) one
has equality Q(y) = Q(x)(g−1)⊗k whenever g ∈ G, y = gx(g−1)⊗2.

Therefore if P (A)−1 stands for arbitrary m × m-size nonsingular sub-
matrix of (A ⊗ (Tr1(A))

⊗k−2)Q(A)−1 then one has the equality P (B)−1 =
gP (A)−1, where g ∈ G, B = gA(g−1)⊗2. It implies that whenever A ∈ V0 =
{A ∈ V : det(P (A)) det(Q(A)) ̸= 0} the equality P (B) = P (A)g−1 holds
true for any g ∈ G, where B = gA(g−1)⊗2. Note that

V0 = {A ∈ V : det(P (A)) det(Q(A)) ̸= 0}

is a G-invariant, open and dense subset of V .
Therefore we have the following results.
Theorem 3.1'. Two commutative (anti-commutative) algebras with the

matrices of structural constants A,B ∈ V0 are the same algebras if and only
if

P (A)A(P (A)−1 ⊗ P (A)−1) = P (B)B(P (B)−1 ⊗ P (B)−1).

Theorem 3.2'. The �eld of G-invariant rational functions F (x)G of the
structural constants presented by the matrix x = ((xij,k)i,j,k=1,2,...,m of the
variable commutative (respectively, anti-commutative) algebras, where xij,k =
xik,j (respectively, x

i
j,k = −xik,j) for all i, j, k = 1, 2, ...,m, is generated by the
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system of entries of P (x)x(P (x)−1 ⊗ P (x)−1) over F , that is the equality

F (x)G = F (P (x)x(P (x)−1 ⊗ P (x)−1))

holds true.
Theorem 3.3'. In commutative (anti-commutative) algebra case the transcendence

degree of F (x)G over F equals to m2(m−1)
2 (respectively, m2(m−3)

2 , m ≥ 3) and
the �eld extension F (x)G ⊂ F (x) is a pure transcendental extension.

Now let us consider two dimensional commutative algebra case.
Example 3.1'. Let

A =

(
A1

1,1 A1
1,2 A1

2,1 A1
2,2

A2
1,1 A2

1,2 A2
2,1 A2

2,2

)
, where Ai

1,2 = Ai
2,1 at i = 1, 2, be the matrix of structural constants of a

commutative algebra with respect to a basis. Consider B⊗3 = g⊗3A(g−1)⊗6

and its all contractions on 3 upper and 3 lower indices. Among them in
particular one gets the following 6 equalities:

(Bi
σ(i),pB

j
σ(j),qB

k
σ(k),r) = (Ai

σ(i),pA
j
σ(j),qA

k
σ(k),r)(g

−1)⊗3

, where σ ∈ S3- the symmetric group of permutations of symbols i, j, k, and

(Bi
p,qB

j
r,kB

k
i,j) = (Ai

p,qA
j
r,jA

k
i,j)(g

−1)⊗3, (Bi
p,qB

j
r,iB

k
k,j) = (Ai

p,qA
j
r,iA

k
k,j)(g

−1)⊗3.

So for Q(A) one can take the matrix consisting of the following 8 rows

(Ai
σ(i),pA

j
σ(j),qA

k
σ(k),r)σ∈S3

, (Ai
p,qA

j
r,kA

k
i,j), (A

i
p,qA

j
r,iA

k
k,j)

and for the P (A)−1 any nonsingular 2×2 -size sub-matrix of (A⊗Tr1(A))Q(A)−1

provided that det(Q(A)) ̸= 0.
On classi�cation of three dimensional anti-commutative algebras one can

see [3].

References

[1] Michel Goze and Elisabeth Remm, 2-dimensional algebras, African
Journal of Mathematical Physics, v. 10(2011),81-91.

[2] R. Dur�an D��az et al, Classifying quadratic maps from plane to plane,
Linear Algebra and its Applications 364 (2003),pp. 1-12.

[3] L. Hern�aandez Encinas, et al, Non-degenerate bilinear alternating maps
f : V ×V → V, dim(V ) = 3, over an algebraically closed �eld. Linear Algebra
and its Applications 387 (2004),pp. 689-82.

11



[4] V. Popov, Generic Algebras: Rational Parametrization and Normal
Forms, arXiv: 1411.6570v2[math.AG].

12


